

Prestressed Concrete

A FUNDAMENTAL APPROACH

Fifth Edition
UPDATE
ACI, AASHTO, IBC 2009 Codes Version

Edward G. Nawy

CONTENTS

	PRE	EFACE xix
1	BAS	SIC CONCEPTS 1
	1.1	Introduction 1 1.1.1 Comparison with Reinforced Concrete 2 1.1.2 Economics of Prestressed Concrete 4
	1.2 1.3	Historical Development of Prestressing 5 Basic Concepts of Prestressing 7 1.3.1 Introduction 7 1.3.2 Basic Concept Method 10 1.3.3 C-Line Method 12 1.3.4 Load-Balancing Method 15
	1.4	Computation of Fiber Stresses in a Prestressed Beam by the Basic Method 19
	1.5	C-Line Computation of Fiber Stresses 21
	1.6	Load-Balancing Computation of Fiber Stresses 22
	1.7	SI Working Stress Concepts 23 Selected References 28 Problems 28
2	MA	TERIALS AND SYSTEMS FOR PRESTRESSING 31
	2.1	Concrete 31 2.1.1 Introduction 31 2.1.2 Parameters Affecting the Quality of Concrete 31 2.1.3 Properties of Hardened Concrete 32
	2.2	Stress-Strain Curve of Concrete 36
	2.3	Modulus of Elasticity and Change in Compressive Strength with Time 36 2.3.1 High-Strength Concrete 38 2.3.2 Initial Compressive Strength and Modulus 39
	2.4	Creep 43 2.4.1 Effects of Creep 45 2.4.2 Rheologial Models 45
	2.5	Shrinkage 48
	2.6	Nonprestressing Reinforcement 50
	2.7	Prestressing Reinforcement 53
		2.7.1 Types of Reinforcement 53
		2.7.2 Stress-Relieved and Low-Relaxation Wires and Strands 54
		2.7.3 High-Tensile-Strength Prestressing Bars 55
		2.7.4 Steel Relaxation 56

2.7.5 Corrosion and Deterioration of Strands 58

viii Contents

2.8	ACI Maximum Permissible Stresses in Concrete and Reinforcement 59 2.8.1 Concrete Stresses in Flexure 59	
	2.8.2 Prestressing Steel Stresses 59	
2.9	AASHTO Maximum Permissible Stresses in Concrete and Reinforcement 60	
	2.9.1 Concrete Stresses before Creep and Shrinkage Losses 60	
	2.9.2 Concrete Stresses at Service Load after Losses 60	
	2.9.3 Prestressing Steel Stresses 60	
	2.9.4 Relative Humidity Values 60	
2.10	Prestressing Systems and Anchorages 61	
	2.10.1 Pretensioning 61	
	2.10.2 Post-Tensioning 62	
	2.10.3 Jacking Systems 63	
	2.10.4 Grouting of Post-Tensioned Tendons 64	
2.11	Circular Prestressing 70	
2.12	Ten Principles 70	
	Selected References 70	
PAR'	TIAL LOSS OF PRESTRESS 73	
3.1	Introduction 73	
3.2	Elastic Shortening of Concrete (ES) 75	
	3.2.1 Pretensioned Elements 75	
	3.2.2 Post-Tensioned Elements 78	
3.3	Steel Stress Relaxation (R) 78	
	3.3.1 Relaxation Loss Computation 80	
	3.3.2 ACI-ASCE Method of Accounting for Relaxation Loss 80	
3.4	Creep Loss (CR) 80	
	3.4.1 Computation of Creep Loss 82	
3.5	Shrinkage Loss (SH) 83	
	3.5.1 Computation of Shrinkage Loss 84	
3.6	Losses Due to Friction (F) 85	
	3.6.1 Curvature Effect 85	
	3.6.2 Wobble Effect 86	
	3.6.3 Computation of Friction Loss 87	
3.7	Anchorage-Seating Losses (A) 88	
	3.7.1 Computation of Anchorage-Seating Loss 89	
3.8	Change of Prestress Due to Bending of a Member (Δf_{pB}) 90	
3.9	Step-by-Step Computation of All Time-Dependent Losses in a Pretensioned Beam 90	
3.10	Step-by-Step Computation of All Time-Dependent Losses in a Post-Tensioned Beam 96	
3.11	Lump-Sum Computation of Time-Dependent Losses in Prestress 99	
3.12	SI Prestress Loss Expressions 100	
	13.12.1 SI Prestress Loss Example 101	
	Selected References 104	
	Problems 105	
FLEXURAL DESIGN OF PRESTRESSED		

CONCRETE ELEMENTS 106

4.2.1 General Guidelines 1084.2.2 Minimum Section Modulus 108

Selection of Geometrical Properties of Section Components 108

Introduction 106

4.1

4.2

4.3	Service-Load Design Examples 115
	4.3.1 Variable Tendon Eccentricity 115
	4.3.2 Variable Tendon Eccentricity with No Height Limitation 122
	4.3.3 Constant Tendon Eccentricity 126
4.4	Proper Selection of Beam Sections and Properties 128
	4.4.1 General Guidelines 128
	4.4.2 Gross Area, the Transformed Section, and the Presence of Ducts 130
	4.4.3 Envelopes for Tendon Placement 130
	4.4.4 Advantages of Curved or Harped Tendons 131
	4.4.5 Limiting-Eccentricity Envelopes 132
	4.4.6 Prestressing Tendon Envelopes 136
	4.4.7 Reduction of Prestress Force Near Supports 138
4.5	End Blocks at Support Anchorage Zones 139
	4.5.1 Stress Distribution 139
	4.5.2 Development and Transfer Length in Pretensioned Members and Design of Their
	Anchorage Reinforcement 141
	4.5.3 Post-Tensioned Anchorage Zones: Linear Elastic and Strut-and-Tie
	Theories 144
4.0	4.5.4 Design of End Anchorage Reinforcement for Post-Tensioned Beams 153
4.6	Flexural Design of Composite Beams 158
	4.6.1 Unshored Slab Case 159 4.6.2 Fully Shored Slab Case 161
	4.6.3 Effective Flange Width 161
4.7	Summary of Step-by-Step Trial-and-Adjustment Procedure for the Service-Load Design
7.1	of Prestressed Members 162
4.8	Design of Composite Post-Tensioned Prestressed Simply Supported Section 165
4.9	Ultimate-Strength Flexural Design 178
	4.9.1 Cracking-Load Moment 178
	4.9.2 Partial Prestressing 179
	4.9.3 Cracking Moment Evaluation 180
4.10	Load and Strength Factors 181
	4.10.1 Reliability and Structural Safety of Concrete Components 181
4.11	ACI Load Factors and Safety Margins 184
	4.11.1 General Principles 184
	4.11.2 ACI Load Factors Equations 185
	4.11.3 Design Strength vs. Nominal Strength: Strength-Reduction Factor φ 187
4.12	Limit State in Flexure at Ultimate Load in Bonded Members: Decompression
	to Ultimate Load 188
	4.12.1 Introduction 188
	4.12.2 The Equivalent Rectangular Block and Nominal Moment Strength 189
	4.12.3 Strain Limits Method for Analysis and Design 191
	4.12.4 Negative Moment Redistribution in Continuous Beams 193
4 10	4.12.5 Nominal Moment Strength of Rectangular Sections 194
4.13	Preliminary Ultimate-Load Design 202
4.14	Summary Step-by-Step Procedure for Limit-State-at-Failure Design of the Prestressed Members 204
A 15	
4.15	Ultimate-Strength Design of Prestressed Simply Supported Beam by Strain Compatibility 209
4.16	Strength Design of Bonded Prestressed Beam Using Approximate Procedures 212
4.17	SI Flexural Design Expression 216
,	4.17.1 SI Flexural Design of Prestressed Beams 218
	Selected References 220

Problems 221

SHEAR AND TORSIONAL STRENGTH DESIGN 223

5.1	Introduction 223	
5.2	Behavior of Homogeneous Beams in Shear 224	
5.3	Behavior of Concrete Beams as Nonhomogeneous Sections 227	
5.4	Concrete Beams without Diagonal Tension Reinforcement 228	
	5.4.1 Modes of Failure of Beams without Diagonal Tension Reinforcement 229	
	5.4.2 Flexural Failure [F] 229	
	5.4.3 Diagonal Tension Failure [Flexure Shear, FS] 229	
	5.4.4 Shear Compression Failure [Web Shear, WS] 231	
5.5	Shear and Principal Stresses in Prestressed Beams 232	
	5.5.1 Flexure-Shear Strength $[V_{ci}]$ 233	
	5.5.2 Web-Shear Strength $[V_{cw}]$ 236	
	5.5.3 Controlling Values of V_{ci} and V_{cw} for the Determination of Web Concrete	
	Strength V_c 237	
5.6	Web-Shear Reinforcement 238	
	5.6.1 Web Steel Planar Truss Analogy 238	
	5.6.2 Web Steel Resistance 238	
E 7	5.6.3 Limitation on Size and Spacing of Stirrups 241	
5.7	Horizontal Shear Strength in Composite Construction 242 5.7.1 Service-Load Level 242	
	5.7.2 Ultimate-Load Level 243	
	5.7.3 Design of Composite-Action Dowel Reinforcement 245	
5.8	Web Reinforcement Design Procedure for Shear 246	
5.9	Principal Tensile Stresses in Flanged Sections and Design of Dowel-Action Vertical Steel	
	in Composite Sections 249	
5.10	Dowel Steel Design for Composite Action 250	
5.11	Dowel Reinforcement Design for Composite Action in an Inverted T-Beam 251	
5.12	Shear Strength and Web-Shear Steel Design in a Prestressed Beam 253	
5.13	Web-Shear Steel Design by Detailed Procedures 256	
5.14	Design of Web Reinforcement for a PCI Double T-Beam 259	
5.15	Brackets and Corbels 263	
	5.15.1 Shear Friction Hypothesis for Shear Transfer in Corbels 264	
	5.15.2 Horizontal External Force Effect 266	
	5.15.3 Sequence of Corbel Design Steps 269	
	5.15.4 Design of a Bracket or Corbel 270	
	5.15.5 SI Expressions for Shear in Prestressed Concrete Beams 272	
	5.15.6 SI Shear Design of Prestressed Beams 274	
5.16	Torsional Behavior and Strength 278	
	5.16.1 Introduction 278 5.16.2 Pure Torsion in Plain Concrete Elements 279	
E 17		
5.17	Torsion in Reinforced and Prestressed Concrete Elements 284 5.17.1 Skew-Bending Theory 285	
	5.17.2 Space Truss Analogy Theory 287	
	5.17.3 Compression Field Theory 289	
	5.17.4 Plasticity Equilibrium Truss Theory 293	
	5.17.5 Design of Prestressed Concrete Beams Subjected to Combined Torsion, Shear,	
	and Bending in Accordance with the ACI 318-08 Code 298	
	5.17.6 SI–Metric Expressions for Torsion Equations 303	
5.18		

Design of Web Reinforcement for Combined Torsion and Shear

in Prestressed Beams 308

5.19

5.20	Strut-and-Tie Model Analysis and Design of Concrete Elements 317 5.20.1 Introduction 317
	5.20.2 Strut-and-Tie Mechanism 318
	5.20.3 ACI Design Requirements 321
	5.20.4 Example 5.10: Design of Deep Beam by Strut-and-Tie Method 324
F 04	5.20.5 Example 5.11: Design of Corbel by the Strut-and-Tie Method 328
5.21	SI Combined Torsion and Shear Design of Prestressed Beam 332
	Selected References 335 Problems 337
	Flobients 337
INDE	TERMINATE PRESTRESSED
	ICRETE STRUCTURES 340
CON	ICHETE STRUCTURES 340
6.1	Introduction 340
6.2	Disadvantages of Continuity in Prestressing 341
6.3	Tendon Layout for Continuous Beams 341
6.4	Elastic Analysis for Prestress Continuity 344
	6.4.1 Introduction 344
	6.4.2 Support Displacement Method 344
	6.4.3 Equivalent Load Method 347
6.5	Examples Involving Continuity 347
	6.5.1 Effect of Continuity on Transformation of C-Line for Draped Tendons 347
6.6	6.5.2 Effect of Continuity on Transformation of C-Line for Harped Tendons 352 Linear Transformation and Concordance of Tendons 354
6.6	6.6.1 Verification of Tendon Linear Transformation Theorem 355
	6.6.2 Concordance Hypotheses 358
6.7	Ultimate Strength and Limit State at Failure of Continuous Beams 358
0.7	6.7.1 General Considerations 358
	6.7.2 Moment Redistribution 361
6.8	Tendon Profile Envelope and Modifications 362
6.9	Tendon and C-Line Location in Continuous Beams 362
6.10	Tendon Transformation to Utilize Advantages of Continuity 373
6.11	Design for Continuity Using Nonprestressed Steel at Support 378
6.12	Indeterminate Frames and Portals 379
	6.12.1 General Properties 379
	6.12.2 Forces and Moments in Portal Frames 382
	6.12.3 Application to Prestressed Concrete Frames 386
	6.12.4 Design of Prestressed Concrete Bonded Frame 389
6.13	Limit Design (Analysis) of Indeterminate Beams and Frames 401
	6.13.1 Method of Imposed Rotations 402
	6.13.2 Determination of Plastic Hinge Rotations in Continuous Beams 405
	6.13.3 Rotational Capacity of Plastic Hinges 408
	6.13.4 Calculation of Available Rotational Capacity 411
	6.13.5 Check for Plastic Rotation Serviceability 412
	6.13.6 Transverse Confining Reinforcement for Seismic Design 413 6.13.7 Selection of Confining Reinforcement 414
	Selected References 415
	Problems 417

CAMBER, DEFLECTION, AND CRACK CONTROL 418

Basic Assumptions in Deflection Calculations 419

7.1

7.2

Introduction 418

8.1

8.2

8.3

8.4

Introduction 500

Strength Reduction Factor ϕ 507

Compression Members 508

and Piles 501

7.3	Short-Term (Instantaneous) Detlection of Uncracked and Cracked Members 420	
	7.3.1 Load-Deflection Relationship 420	
	7.3.2 Uncracked Sections 423	
	7.3.3 Cracked Sections 427	
7.4	Short-Term Deflection at Service Load 433	
	7.4.1 Example 7.3 Non-Composite Uncracked Double T-Beam Deflection 433	
7.5	Short-Term Deflection of Cracked Prestressed Beams 439	
	7.5.1 Short-Term Deflection of the Beam in Example 7.3 if Cracked 439	
7.6	Construction of Moment-Curvature Diagram 440	
7.7	Long-Term Effects on Deflection and Camber 446	
	7.7.1 PCI Multipliers Method 446	
	7.7.2 Incremental Time-Steps Method 448	
	7.7.3 Approximate Time-Steps Method 450	
	7.7.4 Computer Methods for Deflection Evaluation 452	
	7.7.5 Deflection of Composite Beams 452	
7.8	Permissible Limits of Calculated Deflection 453	
7.9	Long-Term Camber and Deflection Calculation by the PCI Multipliers Method 454	
7.10	Long-Term Camber and Deflection Calculation by the Incremental	
	Time-Steps Method 458	
7.11	Long-Term Camber and Deflection Calculation by the Approximate	
	Time-Steps Method 469	
7.12	Long-Term Deflection of Composite Double-T Cracked Beam 472	
7.13	Cracking Behavior and Crack Control in Prestressed Beams 479	
	7.13.1 Introduction 479	
	7.13.2 Mathematical Model Formulation for Serviceability Evaluation 479	
	7.13.3 Expressions for Pretensioned Beams 480	
	7.13.4 Expressions for Post-Tensioned Beams 481	
	7.13.5 ACI New Code Provisions 483	
	7.13.6 Long-Term Effects on Crack-Width Development 484	
	7.13.7 Tolerable Crack Widths 485	
7.14	Crack Width and Spacing Evaluation in Pretensioned T-Beam Without Mild Steel 485	
7.15	Crack Width and Spacing Evaluation in Pretensioned T-Beam Containing	
	Nonprestressed Steel 486	
7.16	Crack Width and Spacing Evaluation in Pretensioned I-Beam Containing	
	Nonprestressed Mild Steel 487	
7.17	Crack Width and Spacing Evaluation for Post-Tensioned T-Beam Containing	
- 40	Nonprestressed Steel 488	
7.18	Crack Control by ACI Code Provisions 490	
7.19	SI Deflection and Cracking Expressions 490	
7.20	SI Deflection Control 491	
7.21	SI Crack Control 496	
	Selected References 496	
	Problems 497	
PPE	STRESSED COMPRESSION AND TENSION MEMBERS 500	
	STREETED COM RECOICH AND LENGION MEMBERS 300	

Prestressed Compression Members: Load-Moment Interaction in Columns

Operational Procedure for the Design of Nonslender Prestressed

8.5	Construction of Nominal Load-Moment (P_n-M_n) and Design (P_u-M_u) Interaction Diagrams 509
8.6	Limit State at Buckling Failure of Slender (Long) Prestressed Columns 515 8.6.1 Buckling Considerations 519
8.7	Moment Magnification Method: First-Order Analysis 520 8.7.1 Moment Magnification in Non-Sway Frames 521 8.7.2 Moment Magnification in Sway Frames 522
8.8	Second-Order Frames Analysis and the $P - \Delta$ Effects 523
8.9	Operational Procedure and Flowchart for the Design of Slender Columns 525
8.10	Design of Slender (Long) Prestressed Column 525
8.11	Compression Members in Biaxial Bending 531
	8.11.1 Exact Method of Analysis 531
	8.11.2 Load Contour Method of Analysis 532
	8.11.3 Step-by-Step Operational Procedure for the Design of Biaxially Loaded Columns 535
8.12	Practical Design Considerations 537
	8.12.1 Longitudinal or Main Reinforcement 537
0.40	8.12.2 Lateral Reinforcement for Columns 537
8.13	Reciprocal Load Method for Biaxial Bending 540
8.14	Modified Load Contour Method for Biaxial Bending 542 8.14.1 Design of Biaxially Loaded Prestressed Concrete Column by the Modified Load
	Contour Method 542
8.15	Prestressed Tension Members 544
	8.15.1 Service-Load Stresses 544
	8.15.2 Deformation Behavior 546
	8.15.3 Decompression and Cracking 547
	8.15.4 Limit State at Failure and Safety Factors 547
8.16	Suggested Step-by-Step Procedure for the Design of Tension Members 548
8.17	Design of Linear Tension Members 548
	Selected References 551
	Problems 552
TWO	D-WAY PRESTRESSED CONCRETE FLOOR SYSTEMS 554
9.1	Introduction: Review of Methods 554 9.1.1 The Semielastic ACI Code Approach 557
	9.1.2 The Yield-Line Theory 557
	9.1.3 The Limit Theory of Plates 557
	9.14 The Strip Method 557
	9.1.5 Summary 558
9.2	Flexural Behavior of Two-Way Slabs and Plates 558
	9.2.1 Two-Way Action 558
	9.2.2 Relative Stiffness Effects 558
9.3	The Equivalent Frame Method 559
	9.3.1 Introduction 559
	9.3.2 Limitations of the Direct Design Method 560
	9.3.3 Determination of the Statical Moment M_0 561
	9.3.4 Equivalent Frame Analysis 563
	9.3.5 Pattern Loading of Spans 566
9.4	Two-Directional Load Balancing 567
9.5	Flexural Strength of Prestressed Plates 569

9.5.1 Design Moments M_u 569